Direction provinciale Oujda Angad	1ér Bac IOF	Année scolaire : 2020/2021	
Lycée Lala Asmae	Filière science expérimentale		
Professeur : Mouzouri	$DS N^{\circ} = 2$	Durée : 2 heures	
	1ér semestre	Coefficient: 7	

On donne: g = 9.81N/KgPHYSIQUE (13 points):

Exercice 1 (QCM): Choisir la bonne réponse.

a- L'énergie cinétique d'une balle de masse $m=100\ g$ dont la vitesse est de 36 km.h $^{-1}$ est de :

$$\Box$$
 5,00 J, \Box 5,00×10³ J, \Box 64,8 J, \Box 6,48×10⁴ J

b- Lors de la chute libre d'une bille de masse m d'une hauteur h sans vitesse initiale, à son arrivée au sol on a l'égalité:

$$\square$$
 $\frac{1}{2}V^2 = mgh$, \square $V^2 = 2mgh$, \square $\frac{1}{2}mV^2 = -mgh$, \square $V^2 = 2gh$

Exercice 2:

Au labo, Un professeur a lâché une bille de masse m = 90g d'une hauteur h = 1 m au-dessus du sol sans vitesse initiale. la chronophotographie de la chute libre de la bille est représentée dans la figure(1).

Sachant que la bille passe par la position G_4 d'ordonnée $Z_4 = 87,45$ cm avec la vitesse

 V_4 = 1,56m/S et passe par la position G_8 d'ordonnée Z_8 = 49,8cm avec la vitesse V_8 =3,134m/s.

- 2) Exprimer puis Calculer la valeur l'énergie cinétique $E_c(G_4)$ de la bille au point G_4 (1pt)
- 3) Exprimer puis Calculer la valeur l'énergie cinétique $E_c(G_8)$ de la bille au point G_8 (1pt)
- En déduire la valeur du travail du poids de la bille durant Le déplacement $\overline{G_4G_8}$ (0,5pt)
- 5) En appliquant le T.E.C entre G_4 et O, calculer valeur de la vitesse de la bille à son arrivé

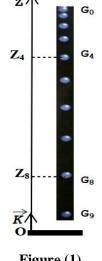
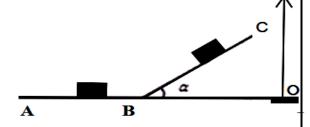


Figure (1)


figure(2)

Exercice 3:

On considère un corps solide (S) de masse m=2 Kg capable de se déplacer sur un rail ABC composé des portions suivantes : figure(2)

- Une portion AB rectiligne et horizontale.
- -Une portion BC rectiligne et inclinée d'un angle $\alpha = 30^{\circ}$ par rapport à l'horizontale.

On prend le plan horizontal passant par le point B comme état de référence de l'énergie potentielle de pesanteur.

- 1) On néglige tous les frottements sur la partie ABC.
 - 1-1)Déterminer l'état mécanique du corps solide (S) sur la portion AB..... (0,5pt)
 - Le corps (S) part du point A avec la vitesse initiale $V_A=10 \text{ m/s}$

- 1-3) Le solide (S) aborde la piste (BC) de longueur BC avant de s'arrêter.

- c) En appliquant le **T.E.C** entre **B** et **C**, exprimer puis calculer la valeur de la longueur BC (1pt)
- 2) En réalité, les frottement sur la partie ABC ne sont pas négligeables, et que la vitesse du solide à son passage par le point B est $V'_B = 6m/s$,
 - En appliquant le **T.E.C** entre **A** et **B** exprimer le travail de la force du frottement notée \vec{f} au cour du déplacement \overrightarrow{AB}(1pt)

Direction provinciale Oujda Angad Lycée Lala Asmae	1ér Bac IOF Filière science expérimentale	Année scolaire : 2020/2021	
Professeur : Mouzouri	DS N°= 2 1ér semestre	Durée : 2 heures Coefficient : 7	

CHIMIE (7 points)

Exercice 1:

Compléter les équations de la dissolution des composés ioniques dans l'eau suivantes:..... (2pts)

- a- $BaCl_2 \rightarrow \dots + \dots$
- b- $Cu(NO_3)_2 \rightarrow \dots + \dots$

Exercice 2:

Le chlorure de calcium de formule $CaCl_2$ est un cristal ionique contenant des ions calcium et des ions chlorure. Un élève fait dissoudre dans V_1 = 250 mL d'eau distillée la masse m_1 =151 mg de chlorure de calcium.

- 2) Quelle est la nature des interactions qui assurent la cohésion au sein d'un solide ionique ?...... (0,25pt)
- 3) Exprimez puis calculez la concentration C₁ en soluté de la solution du chlorure de calcium obtenue. (1pt)

Equation de l	a réaction	CaCl ₂ ear	Ca_{aq}^{2+}	+ 2 <i>Cl</i> _{aq}
Etat de système	Avancement	Quantité de matière (mol)		
Etat initial	X= 0			
Etat intermédiaire	X			
Etat final	X _{max}			

5) déterminer les concentrations effectives des espèces ioniques en solution....... (1,5pts)

Données : $M(CaCl_2) = 111,1 \quad g. \, mol^{-1}$

